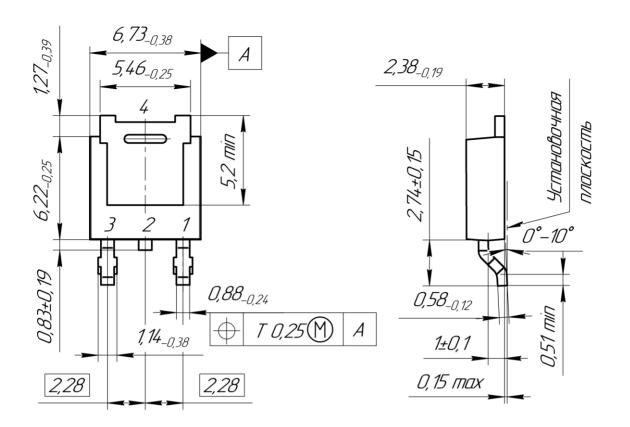
МИКРОСХЕМЫ ИНТЕГРАЛЬНЫЕ 5321EM06A1, 5321EM06A4, 5321EM06A5, 5321EM06A1A, 5321EM06Б1, 5321EM06Б4, 5321EM06Б5, 5321EM06B1, 5321EM06B4, 5321EM06B5

Справочный лист ЮФ.431422.024 Д1

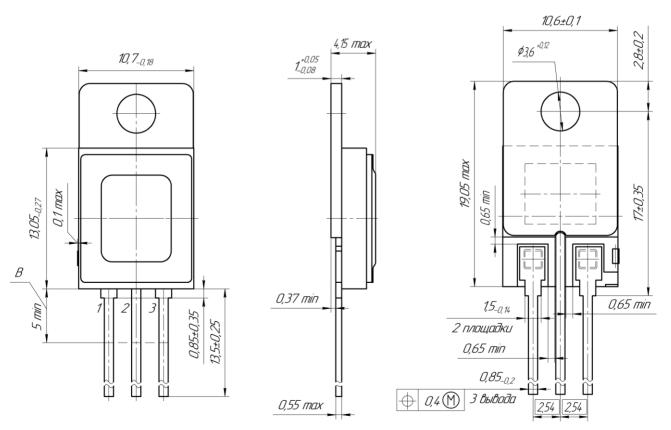
Содержание

1 Внешние воздействующие факторы	7
2 Основные технические данные	9
3 Надежность	12
4 Указания по применению и эксплуатации	12

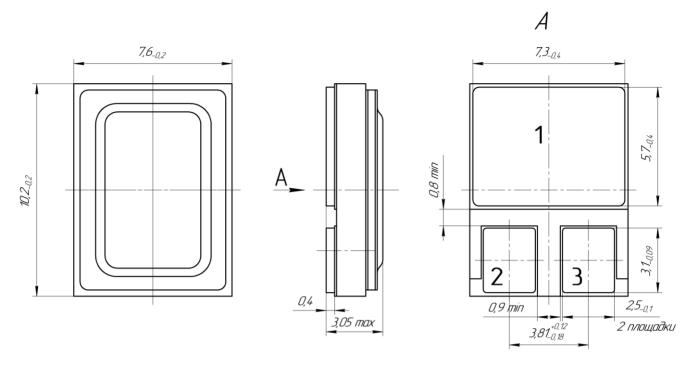

Интегральные микросхемы 5321EM06A1, 5321EM06A4, 5321EM06A5, 5321EM06A1A, 5321EM06B1, 5321EM06B4, 5321EM06B5, 5321EM06B5, представляющие собой стабилизаторы напряжения с фиксированным выходным напряжением отрицательной полярности.

Количество элементов в схеме электрической – 123.

Микросхемы предназначены для применения в источниках вторичного электропитания (ИВЭП) и другой аппаратуре специального назначения.

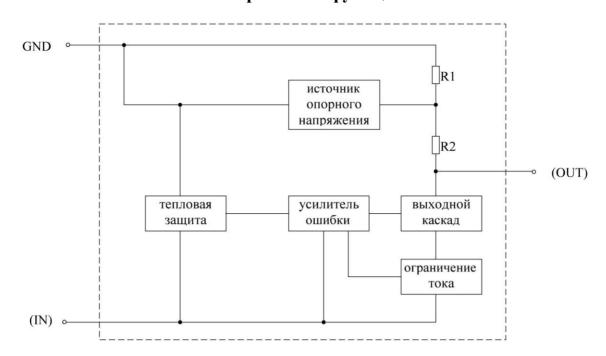

Таблица1 – Типы микросхем

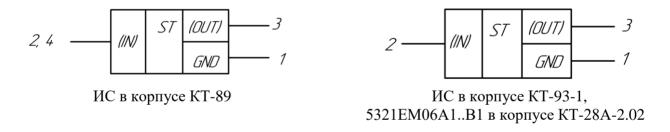
Условное обозначение	Условное обозначение	Масса, г	Содержание дра металлов в 1 000 шт	
микросхемы	корпуса	не более	Золото, г	Серебро, г
5321EM06A4, 5321EM06Б4, 5321EM06B4	KT-89	0,5	-	_
5321EM06A1, 5321EM06Б1, 5321EM06B1, 5321EM06A1A	KT-28A-2.02	3,0	50,599	56,137
5321EM06A5, 5321EM06Б5, 5321EM06B5	KT-93-1	1,0	12,486	24,139



Корпус КТ-89 металлополимерный

Материал покрытия выводов Хим. Н3.б., О-Ви (99,8) 9.


Корпус КТ-28А-2.02 металлокерамический Материал покрытия выводов Н3.3л4.


Корпус КТ-93-1 металлокерамический Материал покрытия выводов H3.3л4.

Пример обозначения микросхем при заказе (в договоре на поставку): Микросхема 5321EM06A1 – AEHB.431420.461-03TУ.

Схема электрическая функциональная

Условное графическое обозначение

5321ЕМ06А1А в корпусе КТ-28А-2.02

Назначение выводов микросхем

		KT-28A-2.02		Назначение вывода		
KT-89	KT-93-1	5321EM06A1,	5321EM06A1A			
		5321EM06Б1, 5321EM06В1				
2,4	2	2	3	Bход, (IN)		
1	1	1	2	Общий вывод, GND		
3	3	3	1	Выход, (OUT)		

1 Внешние воздействующие факторы

Синусоидальная вибрация:	
диапазон частот, Гц	1 - 5000
 – амплитуда ускорения, м·с⁻² (g)	400 (40)
Механический удар:	100 (10)
· · · · · · · · · · · · · · · · · · ·	
 одиночного действия 	15 000
пиковое ударное ускорение, м·с ⁻² (g)	15 000 (1 500)
длительность действия ударного ускорения, мс	0,1-2,0
многократного действия	
пиковое ударное ускорение, м \cdot с ⁻² (g)	1 500 (150)
длительность действия ударного ускорения, мс	1 - 5
Линейное ускорение, м·с $^{-2}$ (g)	5 000 (500)
Акустический шум:	
– диапазон частот, Гц	$50 - 10\ 000$
$-$ уровень звукового давления (относительно $2\cdot 10^{-5}\Pi a$), дБ	170
Атмосферное пониженное рабочее давление, Па (мм.рт.ст.)	$1,3\cdot10^{-4}(10^{-6})$
Атмосферное повышенное рабочее давление, кПа (мм.рт.ст.)	294 (2205)
Повышенная температура среды , °С	
– рабочая	125
предельная (для ИС в корпусе КТ-89)	125
предельная (для ИС в корпусах КТ-28A-2.02, КТ-93-1)	150
Пониженная температура среды, °С	
– рабочая	минус 60
	минус 60
Смена температур, °С:	
– от предельной повышенной температуры среды (для ИС в корпусе КТ-89)	125
– от предельной повышенной температуры среды (для ИС в	1.70
корпусах КТ-28А-2.02, КТ-93-1)	
– до предельной пониженной температуры среды	минус 60

Повышенная относительная влажность при 35°C, %	98
Атмосферные конденсированные осадки (роса, иней)	
(с покрытием лаком)	
Соляной туман (с покрытием лаком)	
Плесневые грибы	
Атмосфера с коррозийно-активными средами	
Контрольные среды, объемная доля компонентов среды, %:	
– гелиево-воздушная	90
– аргоно-воздушная	90
– аргоно-азотная	90

Допускается эксплуатация микросхем при воздействии специальных факторов.

2 Основные технические данные

Т а б л и ц а 2 – Электрические параметры микросхем при приемке и поставке

	Буквен-	Нор	ома	
Havitana payma wana tama	ное	параметра		Темпе-
Наименование параметра,	обозна-			ратура
единица измерения (режим измерения)	чение	не	не	корпуса,
(режим измерения)	пара-	менее	более	°C
	метра			
1	2	3	4	5
Выходное напряжение, В	$U_{ m BHX}$			
5321EM06A4, 5321EM06A1,				
5321EM06A5, 5321EM06A1A		-4,80	-5,20	25±10
		-4,75	-5,25	-60 ± 3
		-4,75	-5,25	125±5
5321ЕМ06Б4, 5321ЕМ06Б1,				
5321ЕМ06Б5		-11,50	-12,50	25±10
		-11,40	-12,60	-60 ± 3
		-11,40	-12,60	125±5
5321EM06B4, 5321EM06B1,				
5321EM06B5		-14,40	-15,60	25±10
		-14,25	-15,75	-60 ± 3
		-14,25	-15,75	125±5
Минимальное падение напряжения, В	U _{ПД min}	_	2,0	25±10
	, ,	_	2,5	-60 ± 3
		_	2,5	125±5
Ток потребления, мА	$I_{\Pi O T}$	_	8,0	25±10
		_	10,0	-60 ± 3
		_	10,0	125±5
Изменение тока потребления от	$\Delta I_{\Pi O T 1}$	_	0,4	25±10
изменения входного напряжения, мА		_	0,8	-60±3
		_	0,8	125±5
Изменение тока потребления от	$\Delta I_{\Pi OT2}$	_	0,4	25±10
изменения выходного тока, мА		_	0,6	-60±3
		_	0,6	125±5

1	2	3	4	5
Нестабильность по напряжению, мВ	ΔU_{U}		-	
5321EM06A4, 5321EM06A1,				
5321EM06A5, 5321EM06A1A			~~	25±10
$(-7.0 \text{ B} < U_{BX} < -25.5 \text{ B}, I_{Bbix} = 10 \text{ mA})$		-	50	-60 ± 3
		_	100 100	125±5
			100	
$(-8.0 \text{ B} < U_{BX} < -18.0 \text{ B}, I_{BbIX} = 10 \text{ mA})$		_	30	25±10
, , , , , , , , , , , , , , , , , , , ,		_	60	-60±3
5321ЕМ06Б4, 5321ЕМ06Б1,		_	60	125±5
5321EM06Б5		_	80	25±10
$(-14.5 \text{ B} < U_{BX} < -30.0 \text{ B}, I_{BbIX} = 10 \text{ mA})$		_	160	-60 ± 3
		_	160	125±5
$(-15.0 \text{ B} < U_{BX} < -25.0 \text{ B}, I_{BMX} = 10 \text{ mA})$		_	50	25±10
		_	100 100	-60 ± 3
5321EM06B4, 5321EM06B1,			100	125±5
5321EM06B5 $(-17.5 B < U_{BX} < -30.0 B, I_{BMX} = 10 MA)$		_	80	25±10
(17,5 B < CBX < 30,0 B, 18blx 10 Mrt)		_	160	-60 ± 3
		_	160	125±5
		_	50	25±10
$(-18.0 \text{ B} < U_{BX} < -28.0 \text{ B}, I_{Bbix} = 10 \text{ mA})$		_	100	-60 ± 3
		_	100	125±5
Нестабильность по току, мВ	ΔU_{I}			
5321EM06A4, 5321EM06A1,				
5321EM06A5, 5321EM06A1A			100	25.10
$(5 \text{ MA} < I_{BbIX} < 500 \text{ MA}, U_{BX} = -10.0 \text{ B})$			100 200	25±10 -60±3
		_	200	125±5
5321ЕМ06Б4, 5321ЕМ06Б1, 5321ЕМ06Б5				14343
$(1 \text{ MA} < I_{BbIX} < 500 \text{ MA}, U_{BX} = -19,0 \text{ B})$		_	240	25±10
		_	400	-60 ± 3
5221EN 407D 4 5221EN 507D 1 5221EN 507D 5		_	400	125±5
5321EM06B4, 5321EM06B1, 5321EM06B5		_	240	25±10
$(1 \text{ MA} < I_{BMX} < 500 \text{ MA}, U_{BX} = -23,0 \text{ B})$		_	480	-60 ± 3
			480	125±5

Т а б л и ц а 3 – Предельно-допустимые и предельные режимы эксплуатации в диапазоне рабочих температур корпуса

	Буквенное	Предельно		Предель-		Номер
Наименование	обозначе-	допустимый		ный режим		пункта
параметра режима,	ние	pex	ким		L	
единица измерения	параметра	не	не	не	не	чания
	режима	менее	более	менее	более	
1	2	3	4	5	6	7
Входное напряжение, В	U_{BX}	_	-30	_	-35	1
Выходной ток, мА	I_{BbIX}	_	500	_	*	1
Рассеиваемая мощность	P_{PAC}					2
(с теплоотводом) в диапазоне						
температуры корпуса						
от минус 60 до 60 °C, Вт						
5321ЕМ06А1, 5321ЕМ06Б1,						
5321EM06B1, 5321EM06A1A,						
5321ЕМ06А4, 5321ЕМ06Б4,						
5321EM06B4		_	4,5	_	_	
5321EM06A5, 5321EM06Б5,						
5321EM06B5		_	3,2	_	_	

Примечания

$$P_{PAC} = \frac{150 - T_{KOP\Pi}}{R_{Tn-\kappa}},\tag{1}$$

где $R_{\text{Тп-к}}$ — тепловое сопротивление кристалл-корпус.

^{1 *} В соответствии с типовой зависимостью, приведенной на рисунке 8.

^{2~}B диапазоне температуры корпуса $T_{KOP\Pi}$ от $60~\text{до}~125~^{\circ}$ C рассеиваемая мощность рассчитывается по формуле

3 Надёжность

Наработка	до	отказа	при	температуре	окружающей	среды	
(65 + 5) °C	и инт	енсивнос	сти отн	казов не более 1	$10^{-8} 1/4, 4 \dots$		150 000
Гамма-про	центн	ый срок	сохран	няемости, лет.			25
Наработка	до от	каза в об.	легчен	ных режимах,	9		180 000
Облегченн	ый ре	жим: РРА	с обл =	$0.5 P_{PAC}$			

4 Указания по применению и эксплуатации

- 4.1 При применении микросхем необходимо руководствоваться схемой электрической функциональной.
 - 4.2 Типовая схема включения микросхем приведена на рисунке 9.

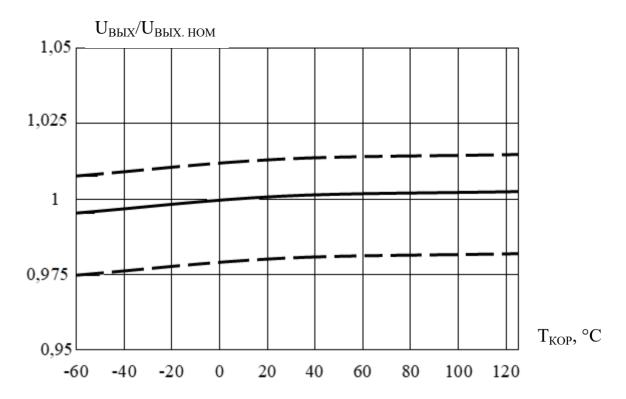


Рисунок 1 — Типовая зависимость отношения выходного напряжения $U_{\rm BЫX}$ к номинальному значению выходного напряжения $U_{\rm BЫX.\ HOM}$ от температуры корпуса $T_{\rm KOP}$

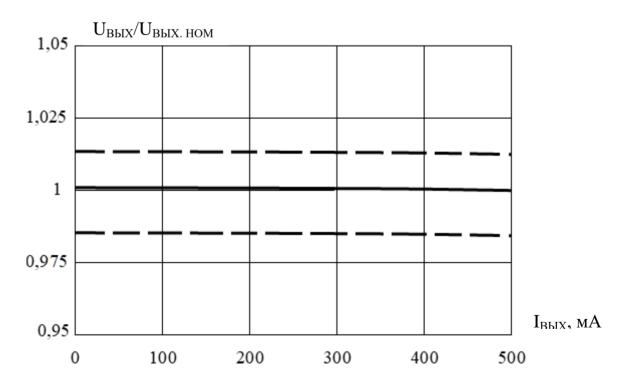


Рисунок 2 — Типовая зависимость отношения выходного напряжения U_{BbIX} к номинальному значению выходного напряжения $U_{BbIX.\ HOM}$ от выходного тока I_{BbIX} при температуре корпуса T_{KOP} = (25 ± 10) °C

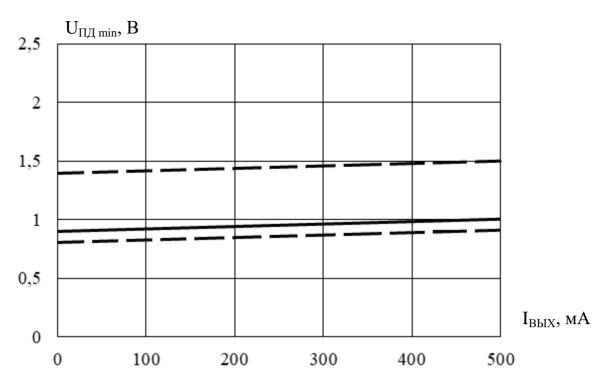


Рисунок 3 — Типовая зависимость минимального падения напряжения $U_{\Pi Д \ min}$ от выходного тока I_{BbIX} при температуре корпуса T_{KOP} = (25 ± 10) °C

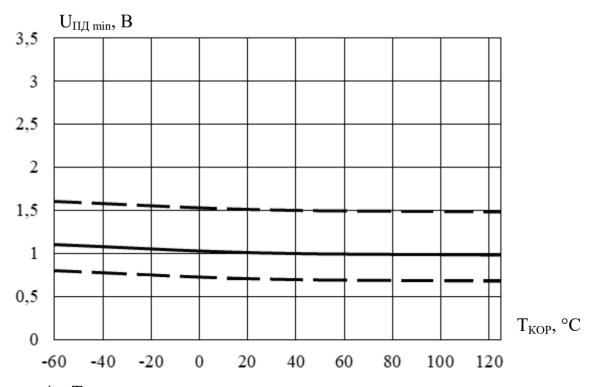


Рисунок 4 — Типовая зависимость минимального падения напряжения $U_{\Pi \text{Д min}}$ от температуры корпуса T_{KOP} при $I_{\text{BЫX}} = 500$ мА

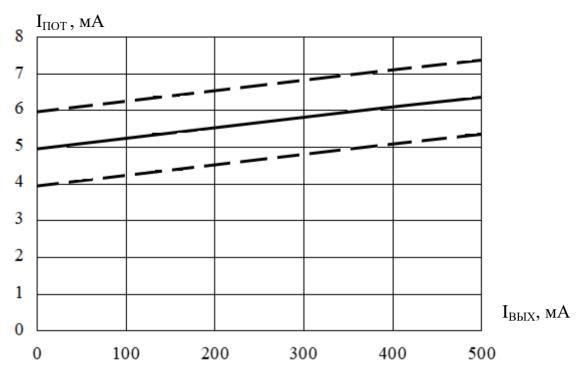


Рисунок 5 — Типовая зависимость тока потребления $I_{\Pi O T}$ от выходного тока $I_{B b I X}$ при температуре корпуса $T_{K O P}$ = (25 ± 10) °C

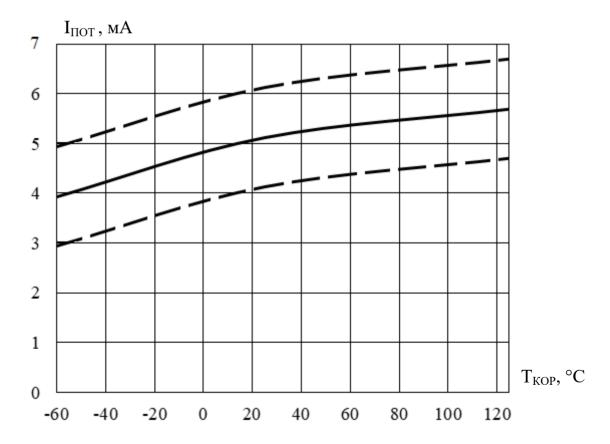


Рисунок 6 — Типовая зависимость тока потребления $I_{\Pi O T}$ от температуры корпуса T_{KOP}

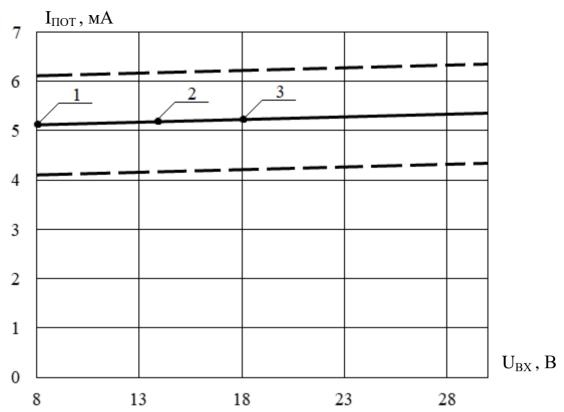


Рисунок 7 — Типовая зависимость тока потребления $I_{\Pi O T}$ от входного напряжения U_{BX} при температуре корпуса T_{KOP} = (25 ± 10) °C: 1— минимальное входное напряжение 5321EM06A, 2— минимальное входное напряжение 5321EM06B

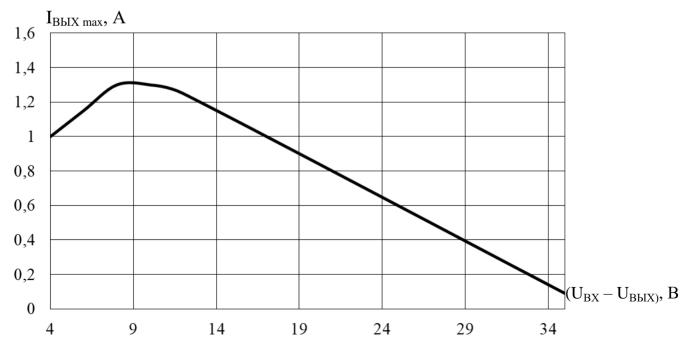
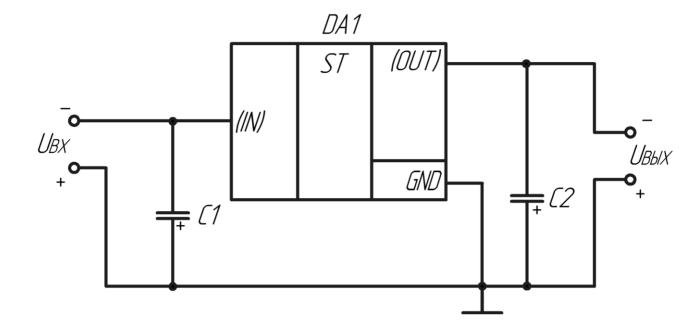



Рисунок 8 — Типовая зависимость максимального выходного тока $I_{BbIX\;max}$ от разницы входного и выходного напряжений ($U_{BX}-U_{BbIX}$) при температуре корпуса T_{KOP} = (25 ± 10) °C

DA1 – микросхема типа 5321EM06;

C1, C2 – конденсаторы, $C1 = (2.2 \pm 0.02)$ мк Φ , $C2 = (1.0 \pm 0.2)$ мк Φ .

Рисунок 9 – Типовая схема включения микросхем типа 5321ЕМ06